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ABSTRACT: This article presents a computational approach to the
imaging of a perfectly conducting cylinder buried in a slab. A con-
ducting cylinder of unknown shape buried in a slab scatters the
incident wave from outside. The scattered field is recorded outside
the slab. Based on the boundary condition and the measured scat-
tered field, a set of nonlinear integral equations is derived, and the
imaging problem is reformulated into an optimization problem. The
genetic algorithm is then employed to determine global extreme
solution of the cost function. Numerical results demonstrated that,
even when the initial guess is far removed from the exact one, good
reconstruction can be obtained. In such a case, the gradient-based
methods often are trapped in a local extreme. In addition, the effect of
Gaussian noise on the reconstruction is investigated. © 2004 Wiley
Periodicals, Inc. Int J Imaging Syst Technol, 14, 1–7, 2004; Published online in
Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20000

Key words: electromagnetic imaging; slab medium; conductor;
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I. INTRODUCTION
The imaging problem of conducting objects has been a subject of
considerable importance in noninvasive measurement, medical im-
aging, and biological application. In the past 20 years, many rigor-
ous methods have been developed to solve the exact equation;
however, inverse problems of this type are difficult to solve because
they are ill posed and nonlinear. As a result, many inverse problems
are reformulated as optimization problems. General speaking, two
kinds of approaches have been developed. The first is based on
gradient searching schemes such as the Newton–Kantorovitch
method (Roger, 1981; Tobocman, 1989; Chiu and Kiang, 1991), the
Levenberg–Marguart algorithm (Colton and Monk, 1986; Kirsch et
al., 1988; Hettlich, 1994), and the successive overrelaxation method
(Kleiman and van den Berg, 1994). These methods are highly
dependent on the initial guess and tend to get trapped in a local
extreme. In contrast, the second approach is based on evolutionary
searching schemes (Xiao and Yabe, 1998; Chiu and Chen, 2000).
They tend to converge to the global extreme of the problem, no
matter what the initial estimate is (Goldberg, 1989; Rahmat-Samii
and Michielssen, 1999). Owing to the difficulties in computing the
Green’s function by a numerical method, the problem of inverse

scattering in a slab has seldom been tackled. To our knowledge,
there are still no numerical results by the genetic algorithm for
perfectly conducting scatterers buried in a slab.

In this article, we investigate the electromagnetic imaging of a
perfectly conducting cylinder buried in a wall, using the steady-state
genetic algorithm to recover the shape of the scatterer. It has been
found that the steady-state genetic algorithm (Vavak and Fogarty,
1996; Johnson and Rahmat-Samii, 1997) can reduce the calculation
time of the image problem compared with the generational genetic
algorithm. We present the theoretical formulation for electromag-
netic imaging in Section II, and describe the general principles of the
genetic algorithm and the way in which we applied them to the
imaging problem. We give the numerical results for various objects
of different shapes in Section III and present our conclusions in
Section IV.

II. THEORETICAL FORMULATION
A. Imaging Problem. Let us consider a two-dimensional slab
structure as shown in Figure 1, where (�i, �i) i � 1, 2, 3 denote the
permittivities and conductivities in each region. Here the perme-
abilities of all three regions are assumed to be �o, and a conducting
cylinder is buried in region 2. The metallic cylinder with cross
section described by the equation � � F(�) is illuminated by an
incident plane wave whose electric field vector is parallel to the
Z-axis (i.e., TM polarization). We assume that the time dependence
of the field is harmonic with the factor exp(j�t). Let Einc denote the
incident field ftom region 1 with incident angle �1 as follows:

Einc � E1
�e�jk1cos �1ye�jk1sin �1xẑ. (1)

Owing to the interfaces, the incident plane wave generates three
waves that would exist in the absence of the conducting object.
Thus, the unperturbed field is given by

E � �
E1 � E1

�e�jk1cos �1ye�jk1sin �1xẑ
� E1

�e�jk1cos �1ye�jk1sin �1xẑ, y 	 a
E2 � E2

�e�jk2cos �2ye�jk2sin �2xẑ
� E2

�e�jk2cos �2ye�jk21sin �2xẑ, a 	 y 	 �a
E3 � E3

�e�jk3cos �3ye�jk3sin �3xẑ, y 
 �a

(2)

where E1
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E1
� �

e�j2k1cos �1a��Z1 � Z2��Z3 � Z2�e
�j2k2cos �2a

� �Z1 � Z2��Z3 � Z2�e
�j2k2cos �2a

�Z1 � Z2��Z3 � Z2�e
�j2k2cos �2a

� �Z1 � Z2��Z3 � Z2�e
�j2k2cos �2a

E2
� �

1

2
ejk2�sin �2x� cos �2a��Z1 � Z2

Z1
e�jk1�sin �1x� cos �1a�

�
Z1 � Z2

Z1
E1

�e�jk1�sin �1x� cos �1a��
E2

� �
1

2
ejk2�sin �2x� cos �2a��Z1 � Z2

Z1
e�jk1�sin �1x� cos �1a�

�
Z1 � Z2

Z1
E1

�e�jk1�sin �1x� cos �1a��
E3

� �
2Z3

Z2 � Z3
E2

�e�jk2�sin �2x� cos �2a� ejk3�sin �3x� cos �3a�

k1sin �1 � k2sin �2 � k3sin �3

k1
2 � �2�i�0 � j��0�i i � 1, 2, 3 Im�ki� 
 0

Z1 �
1

cos �1
, Z2 �

2

cos �2
, Z3 �

3

cos �3
,

1 � ��0

�1
, 2 � ��0

�2
, 3 � ��0

�3
.

At an arbitrary point (x, y) [or (r, �) in polar coordinates] in
regions 1and 3 the scattered field, E� s � E� � E� i, can be expressed
as

Es�r�� � ��
0

2�

G�r�, F����, ���J���� d��, (3)

where J��� � �j��0�F2��� � F�2���Js���, F(�) is the shape func-
tion, and F�(�) is the differentiation of F(�).

G�x, y; x�, y�� � � G1�x, y; x�, y��, y � a
G2�x, y; x�, y��, a � y � � a
G3�x, y; x�, y��, y � �a

(4)

G1 �
1

2� �
��

�

je�j�1�y�a�

�
��2 � �3�e

j�2�y��a� � ��2 � �3�e
�j�2�y��a�

��1 � �2���2 � �3�e
j�2�2a� � ��1 � �2���2 � �3�e

�j�2�2a�

� e�j��x�x�� d�

G2 �
1

2� �
��

� j

2�2

� ��
��1 � �2���2 � �3�e

�j�2��y�y���2a	

� ��2 � �1���2 � �3�e
j�2��y�y���2a	

��1 � �2���2 � �3�e
j�2�2a�

� ��1 � �2���2 � �3�e
�j�2�2a�

	
� �

��2 � �1���2 � �3�e
j�2�y�y�	

� ��2 � �3���1 � �2�e
�j�2�y�y�	

��1 � �2���2 � �3�e
j�2�2a�

� ��1 � �2���2 � �3�e
�j�2�2a�

	
 e�j��x�x�� d�

G3 �
1

2� �
��

�

jej�3�y�a�

� � ��1 � �2�e
�j�2�y��a� � ��2 � �1�e

j�2�y��a�

��1 � �2���2 � �3�e
j�2�2a� � ��1 � �2���2 � �3�e

�j�2�2a��
� e�j��x�x�� d�,

with �i
2 � ki

2 � �2, i � 1, 2, 3 and Im(�i) 
 0.
Note that G1, G2, and G3 denote the Green’s function, which can

be obtained by tedious mathematic manipulation for the line source
in region 2. Note that we might face some difficulties in calculating
the Green’s function. The function, given by (4), is in the form of an
improper integral that must be evaluated numerically. However, the
integral converges very slowly when (x, y) and (x�, y�) approach the
interface. Fortunately, we find that the integral in the Green’s
function may be rewritten as a closed-form term plus a rapidly
converging integral (see Appendix). Thus, the whole integral in the
Green’s function can be calculated efficiently. Js(�) is the induced
surface current density, which is proportional to the normal deriv-
ative of the electric field on the conductor surface. The boundary
condition on the surface of the scatterer states that the total tangen-

Figure 1. Geometry of the problem in (x, y) plane.
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tial electrical field must be zero and yield an integral equation for
J(�):

E2�r�� � ��
0

2�

G2�r�, F����, ���J���� d��. (5)

For the direct scattering problem, the scattered field Es is calcu-
lated by assuming that the shapes are known. This can be achieved
by first solving J in (5) and then calculating Es using (3). For the
inverse problem, assume that the approximate center of the scatterer,
which can be any point inside the scatterer, is known. Then the
shape function F(�) can be expanded as

F��� � 
n�0

N/2

Bncos �n�� � 
n�1

N/2

Cnsin�n��, (6)

where Bn and Cn are real coefficients to be determined, and N � 1
is the number of unknowns for the shape function. Note that the
discretization number of J(�) for the inverse problem must be
different from that for the direct problem. In our simulation, the
discretization number for the direct problem is twice that for the
inverse problem. It is crucial that the synthetic data generated
through a direct solver are not like those obtained by the inverse
solver. In the inversion procedure, the steady-state genetic algorithm
is used to minimize the following cost function:

CF � � 1

Mt

m�1

Mt

�Es
exp�r�m� � Es

cal�r�m��2/�Es
exp�r�m��2�1/2

, (7)

where Mt is the total number of measurement points. Es
exp�r�� and

Es
cal�r�� are the measured and calculated scattered fields, respectively.

B. Steady-State Genetic Algorithm. To the best of our knowl-
edge, most (if not all) genetic algorithms (GA) use the uniform pdf
to generate the random numbers needed during the course of off-
spring generation. We propose an improved, efficient SSGA version,
called NU-SSGA, for which the bit string representation is kept and
nonuniform beta distributions are introduced to help control the
generation of offspring. Thus, in NU-SSGA, control over the gran-
ularity of representation is still possible, while the crossover and
mutation operators are modified by incorporating the beta distribu-
tion such that the convergence speeds are improved for high-preci-
sion numerical optimization problems.

In general, a typical GA optimizer must be able to perform seven
basic tasks (Johnson and Rahmat-Samii, 1997; Weile and Michiels-
sen, 1997):

1. Encode the solution parameters as genes,
2. Create a string of the genes to form a chromosome,
3. Initialize a starting population,
4. Evaluate and assign fitness values to individuals in the pop-

ulation,
5. Perform reproduction through some selection scheme,
6. Perform recombination of genes to produce offspring, and
7. Perform mutation of genes to produce offspring.

In an NU-SSGA optimizer, task 2 is omitted, i.e., the strings
of the parameters are not accumulated to form a chromosome as
a typical GA optimizer does. For each individual, different pa-
rameters remain separated. In this case, the crossover operator for
task 6 needs to be modified. A single-point crossover operator is
used. Note that the new offspring is created by swapping the
genetic materials of the corresponding parameters instead of the
chromosomes, as is done in a typical GA (Weile and Michielssen,
1997).

Task 6 may be regarded as a modified N-point crossover version
of the typical GA with one crossover point per parameter, where N
is the number of parameters. The key distinction between an NU-
SSGA and a typical GA is in the location of random crossover
points. In a typical GA, the crossover points are randomly deter-
mined through a uniform probability density function (Weile and
Michielssen, 1997), whereas, for an NU-SSGA, the crossover points
are randomly and nonuninformly determined through other pdf’s.
The beta distributions are used in this article, of which the pdf’s with
different parameter pair are detailed in the reference (Rohatgi and
Saleh, 2001). By changing the parameter pair adaptively, we can
move the crossover points between the most significant bit (MSB)
regions and the least significant bit (LSB) regions for different
individuals. For those individuals for which the crossover points are
around the MSB regions, NU-SSGA is in the phase of searching
through the solution space with the parameters as largely spaced as
possible, by which the diversity of the genetic distribution is main-
tained. On the other hand, when the crossover points are around the
LSB regions, NU-SSGA is in the phase of speeding convergence,
which is analogous to the mechanism of a local search algorithm.
Similarly, the same distribution must be applied to the mutation
operator for task 7 in accordance with the crossover operator.
Finally, it should be noted that uniform pdf is still used for all the
other tasks, such as the choice of parents for crossover and creation
of initial population.

In our problem, both parameters Bn and Cn are encoded using
Gray code. We employ NU-SSGA for the imaging problem inves-
tigated. We obtained new offspring by using a rank selection
scheme. As soon as the cost function (CF) changes by 
1% in two
successive generations, the algorithm is terminated, and the final
solution is then obtained.

It should be noted that the calculation of the Green’s function is
quite computationally expensive. NU-SSGA has not only a faster
convergence characteristic (Johnson and Rahmat-Samii, 1997;
Weile and Michielssen, 1997), but also a lower rate of crossover. As
a result, it is a suitable scheme to save calculation time for the
inverse problem as compared to the generational GA

III. NUMERICAL RESULTS
We illustrate the performance of the proposed inversion algorithm
and its sensitivity to random noise in the scattered field. Consider a
lossless three-layer structure (�1 � �2 � �3) and a perfectly con-
ducting cylinder buried in region 2. The permittivity in each region
is characterized by �1 � �0, �2 � 2.55�0, and �3 � �0, respectively,
as shown in Figure 1. The frequency of the incident wave is chosen
to be 1 GHz, with the incident angles equal to 45° and 315°,
respectively. The width of the second layer is 0.3 m. Sixteen
measurement points are equally separated on a circle of 3-m radius
about center at equal spacing in region 1 and region 3. Thus there are
32 measurements in total in each simulation. The number of un-
knowns is set to be 9 (i.e., N � 1 � 9). The population size is chosen
as 120. The coding length of each unknown coefficient, Bn (or Cn),
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is set to be 16 bits. The search range for the unknown coefficient of
the shape function is chosen to be from 0 to 0.1. The crossover
probability pc and mutation probability pm are set to be 0.05 and
0.025.

In the first example, the shape function is chosen to be F(�) �
(0.06 � 0.01cos2� � 0.02sin 2�) m. The reconstructed shape
function for the best population member is plotted in Figure 2(a)
with the shape error shown in Figure 2(b). The reconstructed
result is quite good. Here, the shape function discrepancy is
defined as

DR � � 1

N� 
i�1

N�

�Fcal��i� � F��i�	
2/F2��i�� 1/2

, (9)

where N� is set to 1000.
To investigate the sensitivity of the imaging algorithm against

random noise, two independent Gaussian noises with zero mean are
added to the real and imaginary parts of the simulated scattered
fields. Normalized standard deviations of 10�4, 10�3, 10�2, and
10�1 are used in the simulations. The normalized standard deviation
is defined as the standard deviation of the Gaussian noise divided by
the rms value of the scattered fields. Thus, the signal-to-noise ratio
(SNR) is inversely proportional to the normalized standard devia-
tion. The shape error vs. normalized noise level for example 1 is
plotted in Figure 2(c). It is found that the effect of noise is negligible
for normalized standard deviations below 10�2.

In the second example, the shape function is chosen to be F(�) �
(0.05 � 0.01cos3� � 0.01sin3�) m. The purpose of this example is
to show that the proposed scheme is able to reconstruct a scatterer
whose shape has three concavities. The reconstructed shape function
for the best population member is plotted in Figure 3(a), with the
shape error shown in Figure 3(b). The reconstructed shape error is

5%.

In the third example, the shape function is chosen to be F(�) �
(0.05 � 0.01cos4� � 0.01sin4�) m. The purpose of this example
is to show that our method can reconstruct the scatterer whose
shape function has four concavities. The reconstructed shape
function for the best population member is plotted in Figure 4(a)
with the error shown in Figure 4(b). The reconstructed shape
error is 
5%.

IV. CONCLUSIONS
We have reported a study of applying the genetic algorithm to
reconstruct the shapes of an embedded conducting cylinder. Based
on the boundary condition and measured scattered field, we have
derived a set of nonlinear integral equations and reformulated the
imaging problem into an optimization problem. The genetic algo-
rithm is then employed to de-embed the microwave image of a
metallic cylinder. In our experience, the main difficulties in applying
the genetic algorithm to the problem are to choose the suitable
parameters, such as the population size, coding length of the string
(L), crossover probability (pc), and mutation probability (pm). Dif-
ferent parameter sets will affect the speed of convergence as well as
the computation time. Moreover, compared with the Newton–Kan-
torovitch algorithm, the genetic algorithm needs more computation
time. However, accuracy, stability, and generality are better than in
the Newton–Kantorovitch algorithm. Numerical results show that
good reconstruction can be achieved as long as the normalized noise
level is 
10�2.

Figure 2. (a) Shape function for example 1. The solid curve repre-
sents the exact shape, while the dashed curves are calculated shape
in iteration process. (b) Shape function error in each generation. (c)
Shape function error as a function of noise levels for example 1.

4 Vol. 14, 1–7 (2004)

 10981098, 2004, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

a.20000 by T
am

kang U
niversity, W

iley O
nline L

ibrary on [27/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



APPENDIX
To calculate the Green’s function, we can use the following formula:

�
u

�

xr�1e��xcos �x dx �
1

2
�� � j���r��r, �� � j��u	

�
1

2
�� � j���r��r, �� � j��u	 for Re � � �Im �� (A1)

where �(�, Z) � z
� e�tt��1 dt.

� is the incomplete gamma function, which has the following
properties:

���n, z� �
��1�n

n! ���0, Z� � e�z 
m�0

n�1

��1�m
m!

zm�1�
��0, z� � �� � ln z � 

n�1

�

��1�n
zn

�n � 1�!
��arg�z�� 
 �] (A2)

in which � is Euler’s constant, i.e., � � 0.5772156649.
Let us consider the following integral

G1 �
1

2� �
��

�

je�jr1�y�a�

� � �r2 � r3�e
jr2�y��a� � �r2 � r3�e

�jr2�y��a�

�r1 � r2��r2 � r3�e
jr2�2a� � �r1 � r2��r2 � r3�e

�jr2�2a��
� e�j��x�x�� d�

�
1

� �
0

�

je�jr1�y�a�

� � �r2 � r3�e
jr2�y��a� � �r2 � r3�e

�jr2�y��a�

�r1 � r2��r2 � r3�e
jr2�2a� � �r1 � r2��r2 � r3�e

�jr2�2a��
� cos ��x � x�� d�,

Figure 3. (a) Shape function for example 2. The solid curve repre-
sents the exact shape, while the dashed curves are calculated shape
in iteration process. (b) Shape function error in each generation.

Figure 4. (a) Shape function for example 3. The solid curve repre-
sents the exact shape, while the dashed curves are calculated shape
in iteration process. (b) Shape function error in each generation.
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where ri
2 � ki

2 � �2, i � 1, 2, 3, Im(�i) 
 0 , y 	 a, a 	 y� 	 �a.
The integral G1 may be rewritten as follows

G1 �
1

� �
0

�

je�jr1�y�a�

� � �r2 � r3�e
jr2�y��a� � �r2 � r3�e

�jr2�y��a�

�r1 � r2��r2 � r3�e
jr2�2a� � �r1 � r2��r2 � r3�e

�jr2�2a��
� cos ��x � x�� d�

�
1

2� �
�0

� �e���y�y��

�
�

�k3
2 � k2

2�e���y�y��2a�

4�3 �cos ��x � x�� d�

�
1

2� �
�0

� �e���y�y��

�
�

�k3
2 � k2

2�e���y�y��2a�

4�3 �cos ��x � x�� d�.

In general, we choose �0 � �ki�, i � 1, 2, 3.
By Eq. (A1), we get

�
1

2� �
�0

� �e���y�y��

�
�

�k3
2 � k2

2�e���y�y��2a�

4�3 � cos ��x � x�� d� � �
1

4�
���0, ��y � y�� � j�x � x��	�0	

� ��0, ��y � y�� � j�x � x��	�0	� �
�k3

2 � k2
2�

16� ���y � y� � 2a� � j�x � x��	2���2, ��y � y� � 2a� � j�x � x��	�0	
� ��y � y� � 2a� � j�x � x��	2���2, ��y � y� � 2a� � j�x � x��	�0	�.

Using the above relation, we obtain

G1 �
1

� �
0

�

je�jr1�y�a�� �r2 � r3�ejr2�y��a� � �r2 � r3�e�jr2�y��a�

�r1 � r2��r2 � r3�e
jr2�2a� � �r1 � r2��r2 � r3�e

�jr2�2a��cos ��x � x�� d�

�
1

2� �
�0

� �e���y�y��

�
�

�k3
2 � k2

2�e���y�y��2a�

4�3 � cos ��x � x�� d�

�
1

4�
� ��0, ��y � y�� � j�x � x��	�0	 � ��0, ��y � y�� � j�x � x��	�0	�

�
�k3

2 � k2
2�

16� ���y � y� � 2a� � j�x � x��	2���2, ��y � y� � 2a� � j�x � x��	�0	
� ��y � y� � 2a� � j�x � x��	2���2, ��y � y� � 2a� � j�x � x��	�0	�. (A3)

Now, the integral G1 is written as a rapidly converging integral
plus a dominate integral. We can use Eq. (A3) to evaluate G1 by
means of Simpson’s rule easily.

Similarly,

G2 �
1

� �
0

� j

2r2
�� �r1 � r2��r2 � r3�e�jr2��y�y���2a	 � �r2 � r1��r2 � r3�e

jr2��y�y���2a	

�r1 � r2��r2 � r3�e
jr2�2a� � �r1 � r2��r2 � r3�e

�jr2�2a� �
� ��r2 � r1��r2 � r3�e

jr2�y�y�	 � �r2 � r3��r1 � r2�e
�jr2�y�y�	

�r1 � r2��r2 � r3�e
jr2�2a� � �r1 � r2��r2 � r3�e

�jr2�2a� � �
je�jr2�y�y��

2r2
� cos ��x � x�� d�

�
j

4
H0

�2��k2��x � x�� � �y � y��� �
1

2� �
�0

� �
�k3

2 � k2
2��k1

2 � k2
2�e���4a��y�y��	

16�5

�
�k1

2 � k2
2�

4

e���2a�y�y��

�3 �
�k3

2 � k2
2�

4

e���y��y�2a�

�3
	 cos ��x � x�� d�

�
�k1

2 � k2
2�

16� ���2a � y � y�� � j�x � x��	2���2, ��2a � y � y�� � j�x � x��	�0	
� ��2a � y � y�� � j�x � x��	2���2, ��2a � y � y�� � j�x � x��	�0	�

�
�k3

2 � k2
2�

16� ���y � y� � 2a� � j�x � x��	2���2, ��y � y� � 2a� � j�x � x��	�0	
� ��y � y� � 2a� � j�x � x��	2���2, ��y � y� � 2a� � j�x � x��	�0	�

�
�k1

2 � k2
2��k3

2 � k2
2�

64� ��4a � �y � y�� � j�x � x��	4���4, �4a � �y � y�� � j�x � x��	�0	
� �4a � �y � y�� � j�x � x��	4���4, �4a � �y � y�� � j�x � x��	�0	�.
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And

G3 �
1

2� �
��

�

jejr3�y�a�� �r1 � r2�e�jr2�y�a� � �r2 � r1�ejr2�y�a�

�r1 � r2��r2 � r3�ejr2�2a� � �r1 � r2��r2 � r3�e�jr2�2a�� e�j��x�x�� d�

�
1

� �
0

�

jejr3�y�a�� �r1 � r2�e
�jr2�y��a� � �r2 � r1�e

jr2�y��a�

�r1 � r2��r2 � r3�e
jr2�2a� � �r1 � r2��r2 � r3�e

�jr2�2a��e�j��x�x�� d�

�
1

2��
�0

� �e���y��y�

�
�

�k1
2 � k2

2�e���2a�y�y��

4�3 �cos ��x � x�� d� �
1

4�
���0, ��y� � y� � j�x � x��	�0	 � ��0,��y� � y� � j�x � x��	�0	�

�
�k1

2 � k2
2�

16� ���2a � y � y�� � j�x � x��	2���2, ��2a � y � y�� � j�x � x��	�0	
� ��2a � y � y�� � j�x � x��	2���2, ��2a � y � y�� � j�x � x��	�0	�
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